Sochacki Park Monitoring Data Summary 2021

Brian Vlach Sr. Water Resources Manager

Sochacki Park Sub-watershed Assessment

- Sub-watershed Assessment conducted on improving the water quality of the wetlands in Sochacki Park.
 - Identify sources of pollutant loading
 - > Watershed
 - > Wetlands
 - Implement Best Management Practices (BMP) to Improve Water Quality
- Partnership Agencies
 - Golden Valley
 - Robbinsdale

Joint Powers Agreement

- Three Rivers Park District
- Bassett Creek Watershed Management Commission
- Barr Engineering
- Objective
 - Understand the ecological health of the wetlands
 - Identify BMP's to improve ecological health of the wetlands, improve aesthetics, and provide recreation and education opportunities
 - Engage Stakeholders throughout the process

Sochacki Park Sub-watershed Assessment

Phase I

- Monitoring 2020 & 2021
 - Watershed Pollutant Loading Estimates
 - Automated Sampling Equipment
 - > Flow & Velocity Measurements
 - Water Quality Nutrient Concentrations (TP, SRP, TSS, & TN)
 - Wetlands
 - > Water Quality (TP, SRP, Chl-a, and Secchi Depth)
 - Aquatic Vegetation
 - Dissolve Oxygen
 - Sediment Core Analysis
 - MnRAM Assessing wetland function & value
 - Water Levels

Phase II

- Watershed & Wetland Modeling (2022)
 - Calibrate Watershed and Wetland Model to monitoring Data
 - Identify Sources of Pollutant Loading
 - Determine realistic water quality goals for these wetlands
 - Develop recommended BMP's that would result in pollutant load reductions to improve water quality

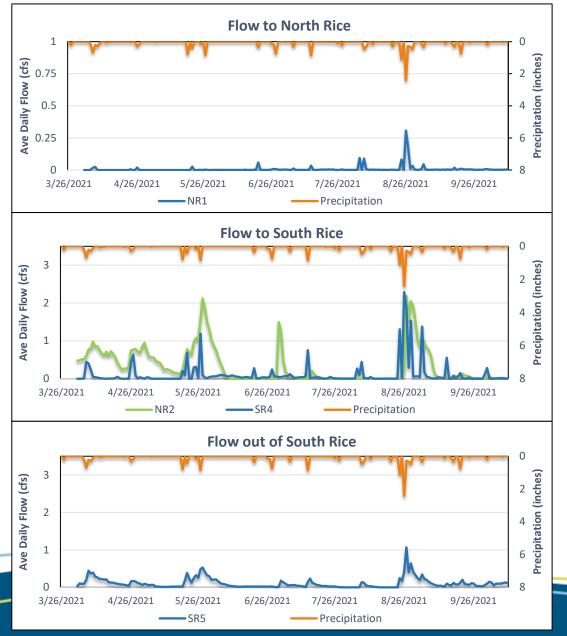
Phase III

- Implement BMP Practices to Improve Water Quality
 - Identify those BMP practices that have a pollutant load reduction cost-benefit
 - Develop BMP implementation plan
 - Implementation of Project in the watershed and wetlands

Bassett Creek Watershed Management Commission Barr Engineering Report 2013

- Assessment was completed on North and South Rice in 2013
 - Barr. (2013). Lake Water Quality Study Northwood Lake, North Rice Pond and South Rice Pond. Minneapolis, MN
- Water quality goals for the wetlands in the report
 - Goals were set by the BCWMC
 - Total phosphorus = $75 \ \mu g/L$
 - Chlorophyll-a = $40 \ \mu g/L$
 - Secchi = 1 m
 - Since these are wetlands and not lakes, there are no state water quality standards

Sochacki Park Ponds

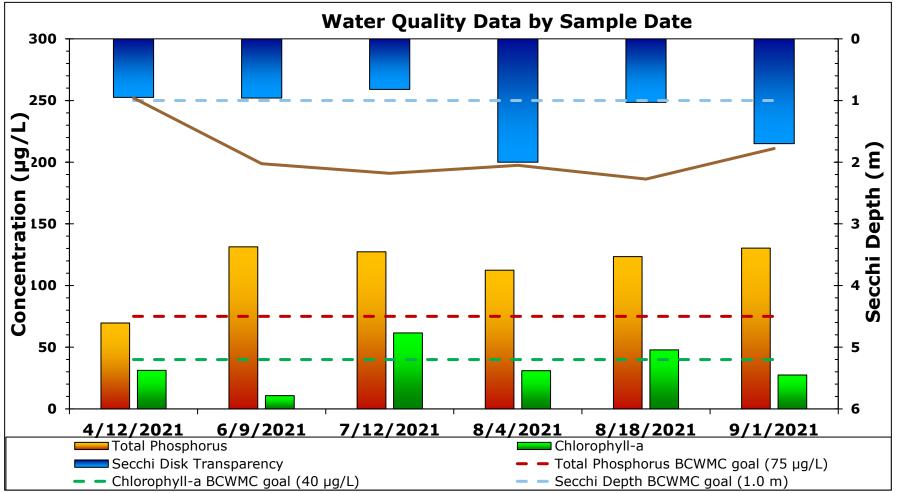

Monitoring

- 3 wetlands-water quality
 - Grimes

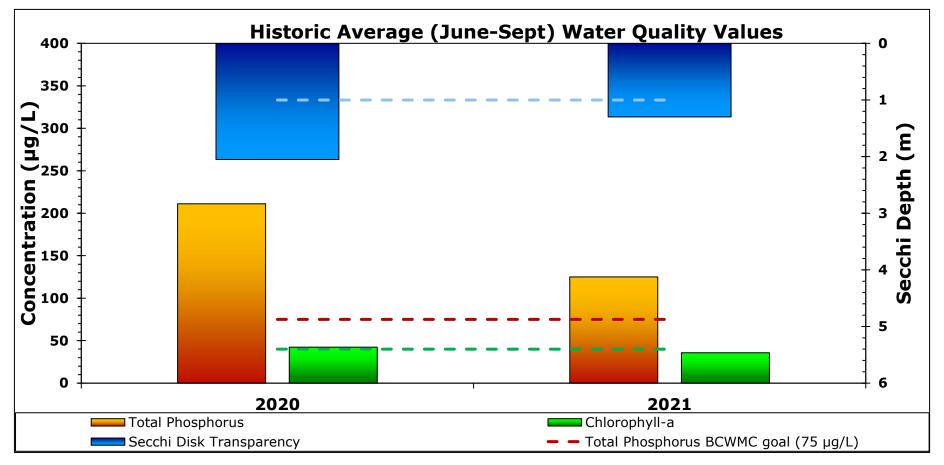
•

- North Rice
- South Rice
- 4 stormwater monitoring sites
- 2 sites where grab water samples were collected during storm events
 - 5 sediment core locations

Sochacki Park Precipitation and Flow 2021


- Precipitation
 - Precipitation below average
 - 2020: 26 inches
 - 2021: 23.4 inches
 - 20-year average: 30 inches
- Notable Rain Events
 - May 24-28th 1.0 inches
 - August 24-29th 4.6 inches
 - Accounted for 30-50% of sampling site flow volumes
- Unfortunately, have 2 years of below average precipitation

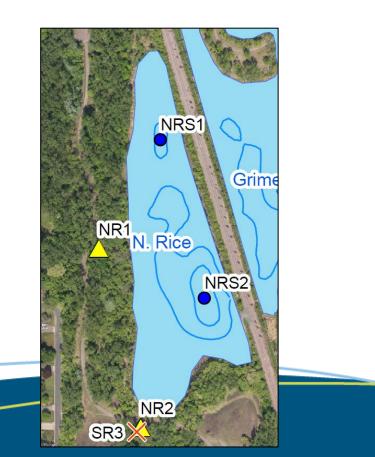
Grimes Pond

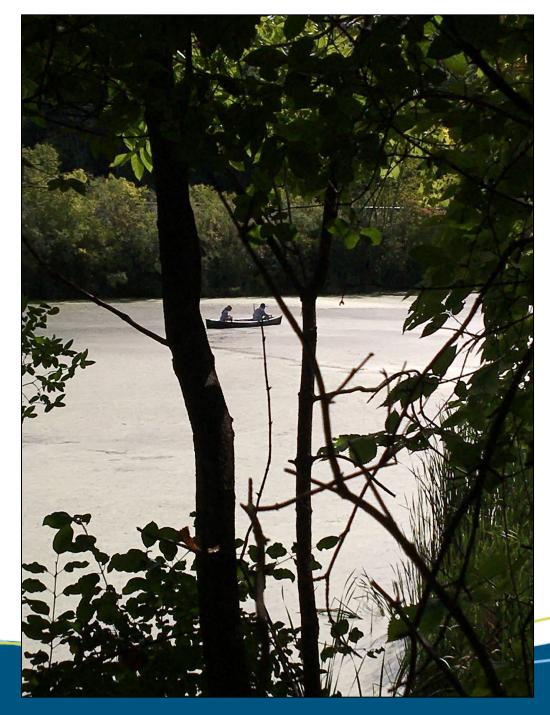

- A culvert that flows into Grimes, GR6, stormwater
 - Flow only during storm events
 - 2 grab samples collected in 2020
 - 1 grab sample collected in 2021
 - Had highest TP and TN concentrations of all stormwater sites

Grimes

- Not meeting TP goals most of season
- Meeting Chlorophyll-a goals most of season
- Close to or meeting secchi depth goals (max reading = 2.0 m)

Grimes

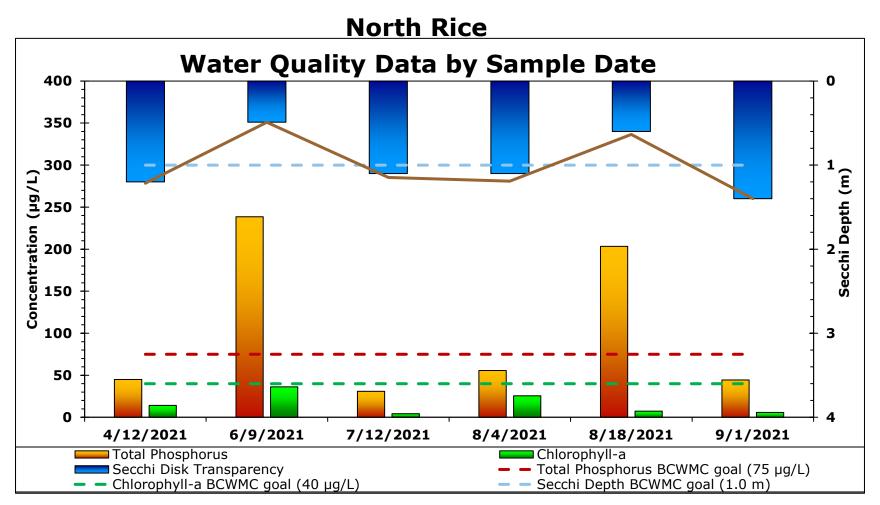



Compared to 2020

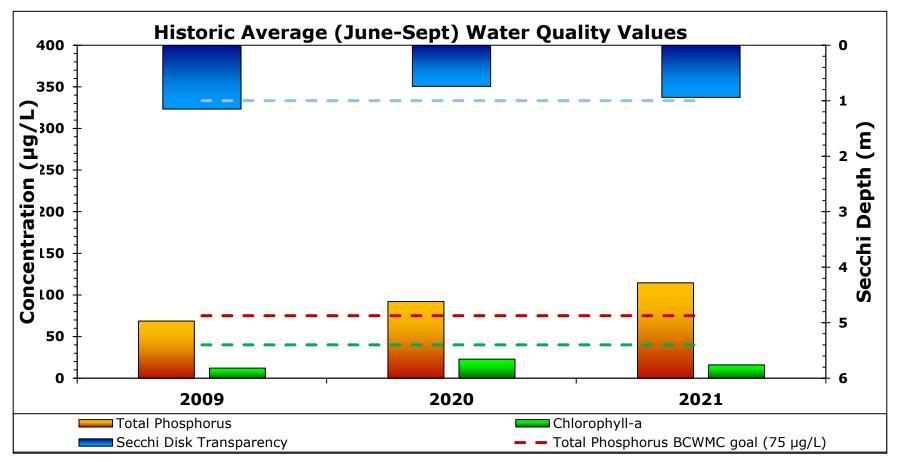
- Lower TP concentrations
- Less visibility
- Chlorophyll-a about the same

North Rice Pond

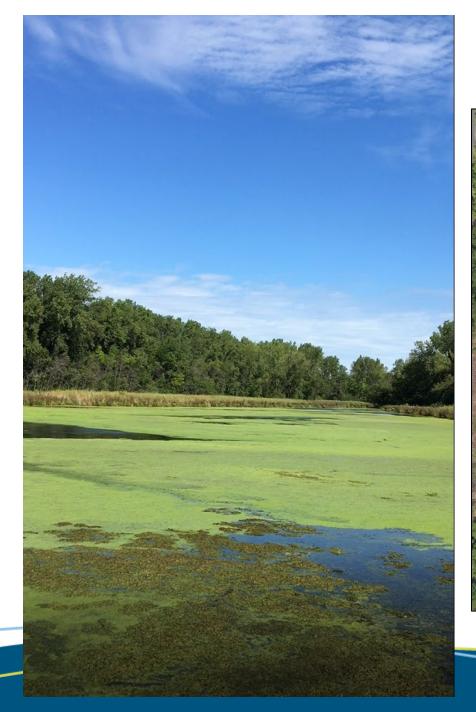
- Receives water from Grimes and NR1
 - There may be other smaller channels – but NR1 is the primary input



NR1 – North Rice Site 1


- Flow only during rain events
 - Sandy soils, so water infiltrates
- Very little flow into North Rice pond
 - Therefore, less loading than other sites
- Yearly loading:
 - 2021 had higher concentrations and higher loading even though a little less precipitation
 - Collected similar number of samples each year

Nutrient Loading						Nutrient	t Concen	tration						
Site	Year	# of samples	TP (lbs/yr)	SRP (lbs/yr)	TN (lbs/yr)	TSS (lbs/yr)	Cl (lbs/yr)	TP (µg/L)	SRP (µg/L)	TN (mg/L)	TSS (mg/L)	Cl (mg/L)	Flow Volume (x 106 M3)	Annual Precipitatio n (inches)
NR1	2020	7	2	1	12	283	0	359	195	2.09	49	0	0.003	25.88
NR1	2021	8	4	2	21	994	27	396	229	2.22	105	3	0.004	23.43


- 2 sample events taken in more shallow areas
 - To ensure a better sample, locations with less vegetation are chosen
 - Those samples happen to have highest TP concentrations
- Meeting Chlorophyll-a goals
- Meeting secchi depth goals (max reading = 1.4 m)
 - Pond is shallow and staff could see bottom of pond at every visit.

North Rice

Compared to 2020

- Higher TP concentrations
- Higher visibility
- Chlorophyll-a about the same

South Rice Pond

Receives water from

- North Rice via NR2
- SR3
 - a small culvert that only runs during storm events
 - Has very little flow and lower concentrations
 - 1 grab sample collected
 - SR4

NR2 – North Rice outlet

- Flows out of North Rice and into South Rice
- Lowest TP, TN and TSS concentrations of the sites
 - Has highest chloride concentrations
- Highest flow of sites
- Has average nutrient loading and high chloride loading compared to other sites
- Collected similar number of samples between 2020 and 2021

				Nutrient Loading				Nutrien	t Concen	tration						
	Site	Year	# of samples	TP (lbs/yr)	SRP (lbs/yr)	TN (lbs/yr)	TSS (lbs/yr)	Cl (lbs/yr)	TP (µg/L)	SRP (µg/L)	TN (mg/L)	TSS (mg/L)	Cl (mg/L)	Flow Volume (x 106 M3)	Annual Precipitation (inches)	
_	NR2	2020	17	50	13	459	1,906	45,739	147	39	1.36	6	135	0.15	25.88	
	NR2	2021	13	63	36	546	2,307	92,479	119	68	1.03	4	174	0.24	23.43	

SR4 – South Rice site 4

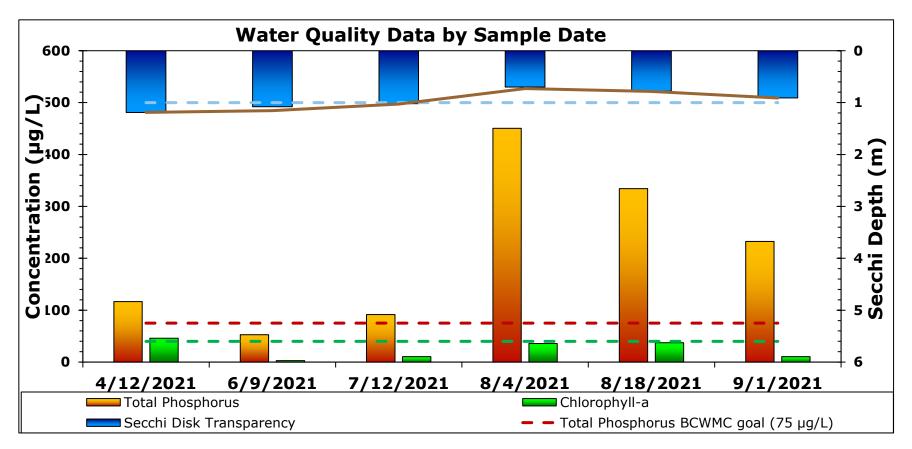
Double culvert that is dry until rain events

- Flows into South Rice
- Low flow since only during storm events
- Collected less samples in 2021 compared to 2020
 - Equipment issues, but were able to collect grabs during peak flow for 4 events
- Average nutrient loading compared to other sites

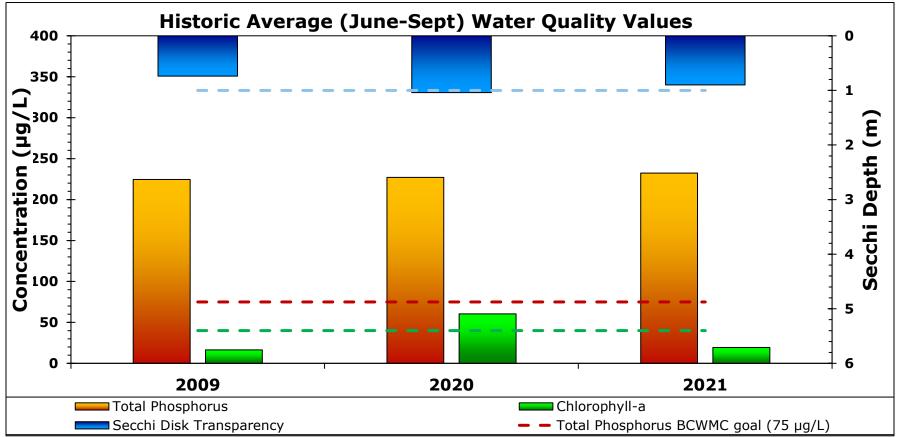
			Nutrient	Loading			Nutrient	t Concen	tration					
Site	Year	# of samples	TP (lbs/yr)	SRP (lbs/yr)	TN (lbs/yr)	TSS (lbs/yr)	Cl (lbs/yr)	TP (μg/L)	SRP (µg/L)	TN (mg/L)	TSS (mg/L)	Cl (mg/L)	Flow Volume (x 106 M3)	Annual Precipitation (inches)
SR4	2020	14	30	18	213	3,933	577	279	163	1.96	36	5	0.05	25.88
SR4	2021	8	64	49	253	1,769	2,531	367	282	1.44	10	14	0.08	23.43

SR4 – South Rice site 4 – other details

Downstream of site


- Quite a bit of concrete and building materials
- Channel is eroded due to heavy flow through this area

Upstream side of culvert


- Grates collect a lot of detritus/debris that is high in nutrients
- Cleaning this area out would allow the sediments to dry out

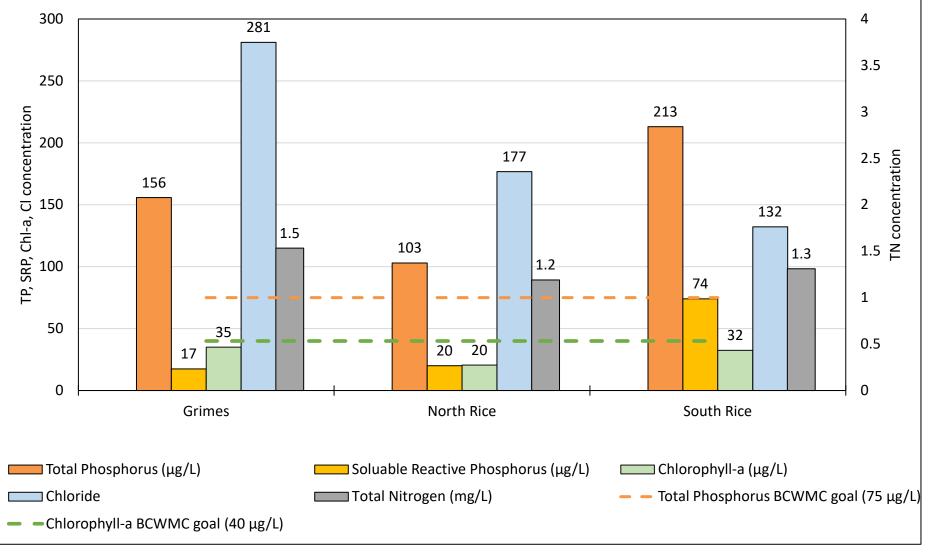
South Rice

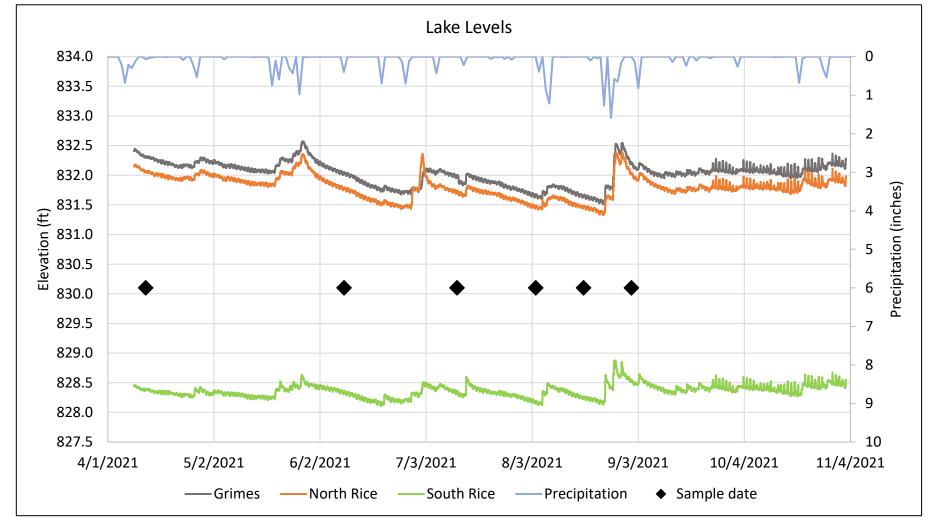
- Not meeting TP goals for half of the season
- Meeting Chlorophyll-a goals
- Meeting secchi depth goals (max reading = 1.19 m)
 - Pond is shallow and staff could see bottom of pond at every visit

South Rice

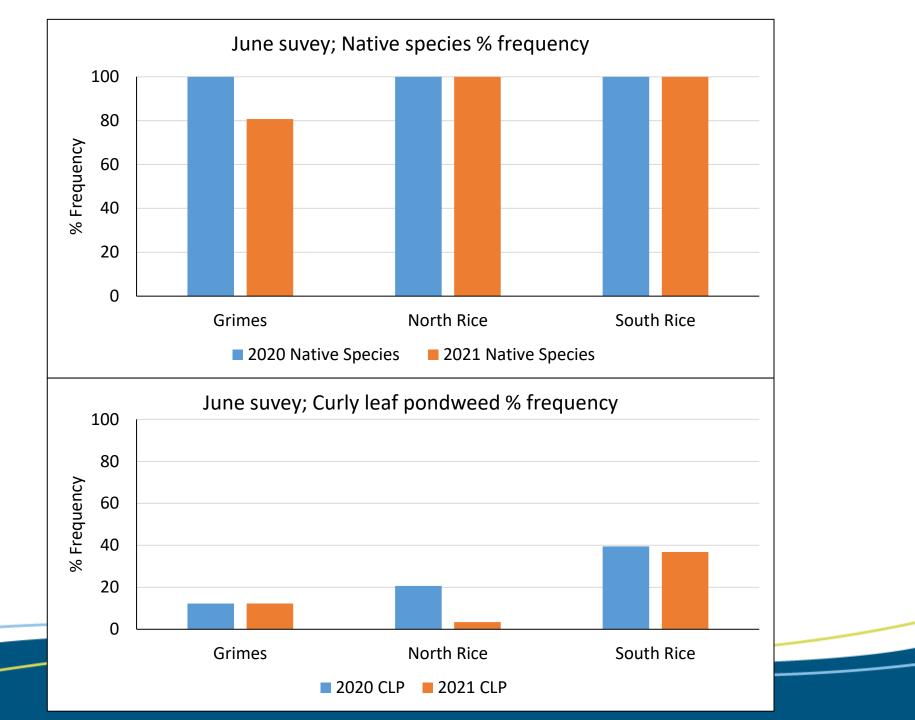
Compared to 2020

- Similar TP concentrations
- Similar visibility
- Lower Chlorophyll-a


SR5 – South Rice outlet



- Flows out of South Rice
 - There is a 2nd outlet channel with similar flows
- Average concentrations
- Measured flow is comparable to flow into South Rice
- Has similar loading to NR2 (outlet of North Rice) but highest TSS and Cl loading of all the sites


				Nutrient Loading Nutrient Concentration							tration					
_	Site	Year	# of samples	TP (lbs/yr)	SRP (lbs/yr)	TN (lbs/yr)	TSS (lbs/yr)	Cl (lbs/yr)	TP (μg/L)	SRP (µg/L)	TN (mg/L)	TSS (mg/L)	Cl (mg/L)	Flow Volume (x 106 M3)	Annual Precipitation (inches)	-
	SR5	2020	21	74	26	526	9,343	28,703	261	94	1.86	33	102	0.13	25.88	
	SR5	2021	13	57	23	379	8,522	25,625	315	124	2.09	47	141	0.08	23.43	

Elevation	Grimes	North Rice	South Rice
Max	832.57	832.38	828.88
Min	831.51	831.33	828.11
Ave	832.03	831.80	828.36
Change in elevation (ft)	1.06	1.06	0.77

Vegetation surveys 2020		% Frequency of Occurance									
		6/17/202	0	8/26/2020							
	Grimes	North Rice	South Rice	Grimes	North Rice	South Rice					
Ceratophyllum demersum (Coontail)	98	97	92	100	100	89					
Potamogeton crispus (Culy-leaf Pondweed)	12	21	39								
Elodea canadensis (Elodea)			47								
Potamogeton spp (Narrow Pondweed spp)	28	45	68	9	14	5					
Stuckenia pectinata (Sago Pondweed)	11	17		4	7						
Chara spp (Chara)	2										
Lemna trisulca (Star Duckweed)	30	48		16	80						
Lemna minor (Small Duckweed)	84	83	100	100	100	82					
Spirodela polyrhiza (Greater Duckweed)	87	65	100	51	100	82					
Wolffia columbiana (Watermeal)	96	89	100	100	100	89					

Vegetation surveys 2021		% Frequency of Occurance									
		6/24/202	1	9/1/2021							
	Grimes	North Rice	South Rice	Grimes	North Rice	South Rice					
Ceratophyllum demersum (Coontail)	96	93	87	100	100	90					
Potamogeton crispus (Culy-leaf Pondweed)	12	3	37								
<i>Elodea canadensis</i> (Elodea)			68			53					
Potamogeton spp (Narrow Pondweed spp)	42	41	79	7		10					
Stuckenia pectinata (Sago Pondweed)	9	10		2	3						
Chara spp (Chara)				2							
Lemna trisulca (Star Duckweed)	33	65		39	65	13					
Lemna minor (Small Duckweed)	100	100	100	98	100	98					
Spirodela polyrhiza (Greater Duckweed)	100	100	100	100	100	98					
Wolffia columbiana (Watermeal)	100	100	100	100	100	98					

Other monitoring

- Dissolved oxygen
 - April and June had higher levels, but rest of season was anoxic at all ponds
 - Due to low oxygen levels, bacteria do not efficiently break down decaying material
- Vegetation
 - Thick Coontail
 - Lots of duckweeds & watermeal
 - 2013 study noted that Curly-leaf pondweed (CLP) was only found in South Rice
 - CLP was found in all 3 ponds in the spring but not in fall due to normal die off
- Sediment Cores
 - Collected in January 2021
 - Awaiting results to see influence of sediment phosphorus on water quality

Sochacki Park Sub-watershed Assessment Next Steps

Phase I

- Monitoring Efforts 2020/2021
- Process and Summarize Monitoring Data –2020/2021
- MnRAM Wetland Function & Value Analysis Fall/Winter 2021
- Stakeholder Engagement Ongoing 2020/2021/2022
 Phase II
- Modeling of Watershed January/February 2022
- Modeling of Wetlands March/April 2022
- Modeling Simulations to evaluate potential watershed BMPs and wetland management options – May 2022
- Sochacki Park Sub-watershed Assessment Report June 2022
 - Phosphorus Load reductions necessary to achieve water quality goals
 - Cost-benefit analysis
 - Implementation Plan